[1]
LIU C Q, YAN Y H, LU P. Physics of turbulence generation and sustenance in a boundary layer[J]. Computers & Fluids, 2014, 102:353-384. https://doi.org/10.1016/j.compfluid.2014.06.032
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fed2fe43f95f1a0522b6abd571cf5377
[2]
Green S I. Fluid Vortices[M]. Dordrecht:Kluwer Academic Publishers, 1995).
[3]
HELMHOLTZ H. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen[J]. Journal Für Die Reine Und Angewandte Mathematik, 1858, 1858(55):25-55. https://doi.org/10.1515/crll.1858.55.25 doi: 10.1515/crll.1858.55.25
[4]
ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1):601-639. https://doi.org/10.1146/annurev.fl.23.010191.003125 doi: 10.1146/annurev.fl.23.010191.003125
[5]
WANG Y Q, YANG Y, YANG G, et al. DNS study on vortex and vorticity in late boundary layer transition[J]. Communications in Computational Physics, 2017, 22(2):441-459. https://doi.org/10.4208/cicp.oa-2016-0183 doi: 10.4208/cicp.OA-2016-0183
[6]
HUNT J, WRAY A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[R]. Center for Turbulence Research Proceedings of the Summer Program, 1988: 193.
[7]
JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285:69. https://doi.org/10.1017/s0022112095000462 doi: 10.1017/S0022112095000462
[8]
CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. https://doi.org/10.1063/1.857730 doi: 10.1063/1.857730
[9]
ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. https://doi.org/10.1017/s002211209900467x doi: 10.1017/S002211209900467X
[10]
LIU C Q, WANG Y Q, YANG Y, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(8):684711. https://doi.org/10.1007/s11433-016-0022-6
http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz-e201803012
[11]
LIU C Q, GAO Y S, DONG X R, et al. Third generation of vortex identification methods:Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics, 2019, 31(2):205-223. doi: 10.1007/s42241-019-0022-4
[12]
LIU C Q, GAO Y S, TIAN S L, et al. Rortex:a new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of Fluids, 2018, 30(3):035103. https://doi.org/10.1063/1.5023001 doi: 10.1063/1.5023001
[13]
GAO Y S, LIU C Q. Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Physics of Fluids, 2018, 30(8):085107. https://doi.org/10.1063/1.5040112 doi: 10.1063/1.5040112
[14]
DONG X, GAO Y, LIU C. New normalized rortex/vortex identification method[J]. Physics of Fluids, 2019, 31:011701. doi:10.1063/1.5066016
[15]
LIU J M, LIU C Q. Modified normalized rortex/vortex identification method[J]. Physics of Fluids, 2019, 31(6):061704. https://doi.org/10.1063/1.5109437 doi: 10.1063/1.5109437
[16]
LIU J M, GAO Y S, WANG Y Q, et al. Objective Omega vortex identification method[J]. Journal of Hydrodynamics, 2019, 31(3):455-463. https://doi.org/10.1007/s42241-019-0028-y doi: 10.1007/s42241-019-0028-y
[17]
LIU C Q. An objective version of the Rortex vector for vortex identification[J]. Physics of Fluids, 2019, 31(6):065112. https://doi.org/10.1063/1.5095624 doi: 10.1063/1.5095624
[18]
GAO Y, LIU C. Letter:rortex based velocity gradient tensor decomposition[J]. Physics of Fluids, 2019, 31:011704. https://doi.org/10.1063/1.5084739 doi: 10.1063/1.5084739
[19]
GAO Y S, LIU J M, YU Y F, et al. A Liutex based definition and identification of vortex core center lines[J]. Journal of Hydrodynamics, 2019, 31(3):445-454. doi: 10.1007/s42241-019-0048-7
[20]
XU H Y, CAI X S, LIU C Q. Liutex (vortex) core definition and automatic identification for turbulence vortex structures[J]. Journal of Hydrodynamics, 2019, 31(5):857-863. https://doi.org/10.1007/s42241-019-0066-5 doi: 10.1007/s42241-019-0066-5
[21]
XU W, WANG Y, GAO Y, et al. Liutex similarity in turbulent boundary layer[J]. Journal of Hydrodynamics, 2019, 31:1259-1262. doi: 10.1007/s42241-019-0094-1
[22]
DONG X R, WANG Y Q, CHEN X P, et al. Determination of epsilon for Omega vortex identification method[J]. Journal of Hydrodynamics, 2018, 30(4):541-548. https://doi.org/10.1007/s42241-018-0066-x doi: 10.1007/s42241-018-0066-x
[23]
TEUESDELL C. Two measure of vorticity[J]. J Rational Mech Anal, 1953, 2:173-217.
http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f0406297
[24]
TUEESDELL C. The kinematics of vorticity[M]. Indiana University Press, 1954: 106-112.
[25]
WANG Y Q, GAO Y S, LIU J M, et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition[J]. Journal of Hydrodynamics, 2019, 31(3):464-474. https://doi.org/10.1007/s42241-019-0032-2 doi: 10.1007/s42241-019-0032-2
[26]
BOULANGER, PH HAYES M. On shearing, stretching and spin[J]. Theoretical and Computational Fluids, 2002, 15:199-229. doi: 10.1007/s001620100050
[27]
LIU C Q. Letter:Galilean invariance of rortex[J]. Physics of Fluids, 2018, 30(11):111701. https://doi.org/10.1063/1.5058939 doi: 10.1063/1.5058939
[28]
LIU J M, WANG Y Q, GAO Y S, et al. Galilean invariance of Omega vortex identification method[J]. Journal of Hydrodynamics, 2019, 31(2):249-255. https://doi.org/10.1007/s42241-019-0024-2 doi: 10.1007/s42241-019-0024-2